Yolov5s:Yolov5sv6.0网络结构分析与实现

jupiter
2022-01-07 / 0 评论 / 2,116 阅读 / 正在检测是否收录...
温馨提示:
本文最后更新于2022年03月04日,已超过993天没有更新,若内容或图片失效,请留言反馈。

1.参考网络结构图(v5.0的)

2. 配置文件解析

  • 原始配置文件yolov5s.yaml
# YOLOv5 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8


   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16

   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • 配置文件解析
Model(
  (model): Sequential(
    (0): Conv(3,32,6,2,2) # 3x640x640-->32x320x320
    (1): Conv(32,64,3,2) # 32x320x320-->64x160x160
    (2): C3(64,64) # 64x160x160-->64x160x160
    (3): Conv(64,128,3,2) # 64x160x160-->128x80x80  #P3
    (4): C3(128,128) # 128x80x80-->128x80x80
    (5): Conv(128,256,3,2) # 128x80x80-->256x40x40 #P4
    (6): C3(256,256) # 256x40x40-->256x40x40
    (7): Conv(256,512,3,2) # 256x40x40-->512x20x20 #P5
    (8): SPP(512,512,[5, 9, 13]) # 512x20x20-->512x20x20 
    (9): C3(512,512) # 512x20x20-->512x20x20  #P6


    (10): Conv(512,256,1,1) # 512x20x20-->256x20x20 
    (11): nn.Upsample(None, 2, 'nearest') # 256x20x20-->256x40x40
    (12): Concat() # [x,p4]==>512x40x40 
    (13): C3(512,256) # 512x40x40-->256x40x40
    (14): Conv(256,128) # 256x40x40-->128x40x40 
    (15): nn.Upsample(None, 2, 'nearest') # 128x40x40-->128x80x80
    (16): Concat() # [x,p3]==>256x80x80
    (17): C3(256,128) # 256x80x80-->128x80x80 #out1
    (18): Conv(128,128,3,2) # 128x80x80-->128x40x40
    (19): Concat() # [x,p4]==>384x40x40
    (20): C3(384,256) # 384x40x40-->256x40x40 #out2
    (21): Conv(256,256,3,2) # 256x40x40-->256x20x20
    (22): Concat() # [x,p5]==>768x20x20 
    (23): C3(768,512) # 768x20x20 -->512x20x20  #out3
    (24): Detect(
        (0): Conv2d(128, 255) # 128x80x80-->((cls_num+4+1)*anchor_num)x80x80 #out1_detect==>[3, 80, 80, 85]
        (1): Conv2d(256, 255) # 256x40x40-->((cls_num+4+1)*anchor_num)x40x40 #out2_detect==>[3, 40, 40, 85]
        (2): Conv2d(512, 255) # 512x20x20-->((cls_num+4+1)*anchor_num)x20x20 #out3_detect==>[3, 20, 20, 85]
    )
  )
)

3.代码实现

3.1 公共基本块

import torch
import torch.nn as nn
import warnings

class Conv(nn.Module):
    # 标准卷积
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class Bottleneck(nn.Module):
    # 标准bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
    
class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

class Concat(nn.Module):
    # 沿维度连接张量列表
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension

    def forward(self, x):
        return torch.cat(x, self.d)


def autopad(k, p=None):  # kernel, padding
    # 计算然卷积结果与输入具有相同大小的padding
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

3.2 backbone

class Yolov5sV6Backbone(nn.Module):
    def __init__(self):
        super(Yolov5sV6Backbone,self).__init__()
        self.backbone_part1 =  nn.Sequential(
            Conv(3,32,6,2,2), # 0
            Conv(32,64,3,2), # 1
            C3(64,64), #2
            Conv(64,128,3,2) #3
        )
        
        self.backbone_part2 =  nn.Sequential(
            C3(128,128), # 4_1
            Conv(128,256,3,2) # 5
        )
        
        self.backbone_part3 =  nn.Sequential(
            C3(256,256), # 6
            Conv(256,512,3,2) # 7
        )
        
        self.backbone_part4 =  nn.Sequential(
            C3(512,512), # 8
            SPPF(512,512,5), # 9
        )
        
    def forward(self,x):
        p3 = self.backbone_part1(x)
        p4 = self.backbone_part2(p3)
        p5 = self.backbone_part3(p4)
        p6 = self.backbone_part4(p5)
       
        return p3,p4,p5,p6
  • 调用测试
backbone = Yolov5sV6Backbone()
fake_input = torch.rand(1,3,640,640)

p3,p4,p5,p6 = backbone(fake_input)
print(p3.shape,p4.shape,p5.shape,p6.shape)
torch.Size([1, 128, 80, 80]) torch.Size([1, 256, 40, 40]) torch.Size([1, 512, 20, 20]) torch.Size([1, 512, 20, 20])

3.3 head

class Yolov5sV6Head(nn.Module):
    def __init__(self):
        super(Yolov5sV6Head,self).__init__()
        
        self.head_part1 = nn.Sequential(
            Conv(512,256,1,1), # 10
            nn.Upsample(None, 2, 'nearest') # 11
        )
        
        self.head_concat1 =Concat() # 12
        
        self.head_part2 = nn.Sequential(
            C3(512,256), # 13
            Conv(256,128), # 14
            nn.Upsample(None, 2, 'nearest') # 15
        )
        
        self.head_concat2 = Concat() # 16
        self.head_out1 = C3(256,128) # 17  # 128x80x80
        
        self.head_part3 =  Conv(128,128,3,2) # 18 
        self.head_concat3 = Concat() # 19
        self.head_out2 =  C3(384,256) # 20  
        
        self.head_part4 =  Conv(256,256,3,2) # 21
        self.head_concat4 = Concat() # 22
        
        self.head_out3 = C3(768,512) # 23 # 512x40x40
        
    def forward(self,p3,p4,p5,x):
        x = self.head_part1(x)
        x = self.head_concat1([x,p4])
        x = self.head_part2(x)
        x = self.head_concat2([x,p3])
        out1 = self.head_out1(x)
        
        x = self.head_part3(out1)
        x = self.head_concat3([x,p4])
        out2 = self.head_out2(x)
        
        x = self.head_part4(out2)
        x = self.head_concat4([x,p5])
        out3 = self.head_out3(x)
    
        return out1,out2,out3
  • 调用测试
backbone = Yolov5sV6Backbone()
head = Yolov5sV6Head()

fake_input = torch.rand(1,3,640,640)
p3,p4,p5,p6 = backbone(fake_input)
out1,out2,out3 = head(p3,p4,p5,p6)
print(out1.shape,out2.shape,out3.shape)

3.4 detect 部分

class Yolov5sV6Detect(nn.Module):
    stride = None  # strides computed during build

    def __init__(self, nc=80, anchors=(), ch=[128,256,512], inplace=True):  # detection layer
        super(Yolov5sV6Detect,self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid
  • 调用测试
anchors = [
    [10,13, 16,30, 33,23],
    [30,61, 62,45, 59,119],
    [116,90, 156,198, 373,326]
]

backbone = Yolov5sV6Backbone()
head = Yolov5sV6Head()
detect = Yolov5sV6Detect(nc=80,anchors=anchors)

fake_input = torch.rand(1,3,640,640)
p3,p4,p5,p6 = backbone(fake_input)
out1,out2,out3 = head(p3,p4,p5,p6)
out1,out2,out3 = detect([out1,out2,out3])

print(out1.shape,out2.shape,out3.shape)
torch.Size([1, 3, 80, 80, 85]) torch.Size([1, 3, 40, 40, 85]) torch.Size([1, 3, 20, 20, 85])

3.5 整体组装

class Yolov5sV6(nn.Module):
    def __init__(self,nc=80,anchors=()):
        super(Yolov5sV6,self).__init__()
        
        self.backbone = Yolov5sV6Backbone()
        self.head = Yolov5sV6Head()
        self.detect = Yolov5sV6Detect(nc,anchors)
        
    def forward(self,x):
        p3,p4,p5,p6 = self.backbone(x)
        out1,out2,out3 = self.head(p3,p4,p5,p6)
        out1,out2,out3 = self.detect([out1,out2,out3])
       
        return out1,out2,out3
  • 调用测试
anchors = [
    [10,13, 16,30, 33,23],
    [30,61, 62,45, 59,119],
    [116,90, 156,198, 373,326]
]

yolov5s = Yolov5sV6(nc=80,anchors=anchors)

fake_input = torch.rand(1,3,640,640)
out1,out2,out3 = yolov5s(fake_input)
print(out1.shape,out2.shape,out3.shape)
torch.Size([1, 3, 80, 80, 85]) torch.Size([1, 3, 40, 40, 85]) torch.Size([1, 3, 20, 20, 85])

4.模型复杂度分析

模型名Input模型大小全精度模型大小半精度参数量FLOPS
backbone640x64026.0MB13.1MB3.80M4.42GFLOPS
head640x64011.5MB5.78MB3.00M2.79GFLOPS
detect640x640897KB450KB0.23M0.37GFLOPS
Yolov5s640x64026.9M13.5M7.03M7.58GFLOPS

参考资料

  1. https://github.com/ultralytics/yolov5
  2. YOLOv5代码详解(common.py部分)
  3. Yolov5从入门到放弃(一)---yolov5网络架构
  4. YOLOV5网络结构
0

评论 (0)

打卡
取消