SpringBoot调用阿里云内容审核API实现文本和图片审核

jupiter
2023-05-10 / 0 评论 / 524 阅读 / 正在检测是否收录...
温馨提示:
本文最后更新于2023年05月10日,已超过619天没有更新,若内容或图片失效,请留言反馈。

1.服务开通

地址:https://vision.aliyun.com/imageaudit?spm=5176.11065253.1411203.3.7e8153f6mehjzV

image-20230510111036882

2.引入公共POM依赖

<!--json转换依赖-->
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>2.0.25</version>
</dependency>
<!--文字内容审核依赖及图片审核依赖共用-->
<dependency>
    <groupId>com.aliyun</groupId>
    <artifactId>imageaudit20191230</artifactId>
    <version>2.0.6</version>
</dependency>

3.文本审核

3.1 核心代码

private static final  String accessKeyId = "<your-access-key-id>";
private static final  String accessKeySecret = "<your-access-key-secret>";

@PostMapping("/scanText")
public String scanText(@RequestBody HashMap<String,String> reqMap) throws Exception {
    // 获取待检测的文字
    String text = reqMap.get("text");
    System.out.println("text="+text);

    // 返回结果的变量
    Map<String,String> resMap = new HashMap<>();

    //实例化客户端
    Config config = new Config()
        // 必填,您的 AccessKey ID
        .setAccessKeyId(accessKeyId)
        // 必填,您的 AccessKey Secret
        .setAccessKeySecret(accessKeySecret);
    config.endpoint = "imageaudit.cn-shanghai.aliyuncs.com";
    Client client = new Client(config);

    /**
         * spam:文字垃圾内容识别
         * politics:文字敏感内容识别
         * abuse:文字辱骂内容识别
         * terrorism:文字暴恐内容识别
         * porn:文字鉴黄内容识别
         * flood:文字灌水内容识别
         * contraband:文字违禁内容识别
         * ad:文字广告内容识别
         */
    // 设置待检测类型
    ScanTextRequest.ScanTextRequestLabels labels0 = new ScanTextRequest.ScanTextRequestLabels()
        .setLabel("politics");
    ScanTextRequest.ScanTextRequestLabels labels1 = new ScanTextRequest.ScanTextRequestLabels()
        .setLabel("contraband");
    ScanTextRequest.ScanTextRequestLabels labels2 = new ScanTextRequest.ScanTextRequestLabels()
        .setLabel("terrorism");
    ScanTextRequest.ScanTextRequestLabels labels3 = new ScanTextRequest.ScanTextRequestLabels()
        .setLabel("abuse");
    ScanTextRequest.ScanTextRequestLabels labels4 = new ScanTextRequest.ScanTextRequestLabels()
        .setLabel("spam");
    ScanTextRequest.ScanTextRequestLabels labels5 = new ScanTextRequest.ScanTextRequestLabels()
        .setLabel("ad");

    // 设置待检测内容
    ScanTextRequest.ScanTextRequestTasks tasks0 = new ScanTextRequest.ScanTextRequestTasks()
        .setContent(text);

    ScanTextRequest scanTextRequest = new ScanTextRequest()
        .setTasks(java.util.Arrays.asList(
            tasks0
        ))
        .setLabels(java.util.Arrays.asList(
            labels0,
            labels1,
            labels2,
            labels3,
            labels4,
            labels5
        ));


    RuntimeOptions runtime = new RuntimeOptions();
    ScanTextResponse response = null;
    try {
        // 复制代码运行请自行打印 API 的返回值
        response = client.scanTextWithOptions(scanTextRequest, runtime);
        resMap.put("data",JSON.toJSONString(response.getBody().getData().getElements().get(0).getResults()));

        //调用后获取到他的返回对象,  然后判断我们的文字 是什么内容
        List<ScanTextResponseBody.ScanTextResponseBodyDataElementsResultsDetails> responseDetails = response.getBody().getData().getElements().get(0).getResults().get(0).getDetails();
        if (responseDetails.size()>0){
            resMap.put("state","block");

            StringBuilder error = new StringBuilder("检测到:");
            for (ScanTextResponseBody.ScanTextResponseBodyDataElementsResultsDetails detail : responseDetails) {
                if ("abuse".equals(detail.getLabel()))  error.append("辱骂内容、");
                if ("spam".equals(detail.getLabel()))  error.append("垃圾内容、");
                if ("politics".equals(detail.getLabel()))  error.append("敏感内容、");
                if ("terrorism".equals(detail.getLabel()))  error.append("暴恐内容、");
                if ("porn".equals(detail.getLabel()))  error.append("黄色内容、");
                if ("flood".equals(detail.getLabel()))  error.append("灌水内容、");
                if ("contraband".equals(detail.getLabel())) error.append("违禁内容、");
                if ("ad".equals(detail.getLabel()))  error.append("广告内容、");
            }
            resMap.put("msg",error.toString());
            return  JSON.toJSONString(resMap);

        }else {
            resMap.put("state","pass");
            resMap.put("msg","未检测出违规!");
            return  JSON.toJSONString(resMap);
        }
    }  catch (Exception _error) {
        resMap.put("state","review");
        resMap.put("msg","阿里云无法进行判断,需要人工进行审核,错误详情:"+_error);
        return  JSON.toJSONString(resMap);
    }
}

3.2 调用结果

  • req
{
    "text":"hello word! 卧槽6666"
}
  • res
{
  "state": "block",
  "msg": "检测到:辱骂内容、",
  "data": {
    "details": [{ "contexts": [{ "context": "卧槽" }], "label": "abuse" }],
    "label": "abuse",
    "rate": 99.91,
    "suggestion": "block"
  }
}

4.图片审核

4.1 核心代码

private static final  String accessKeyId = "<your-access-key-id>";
private static final  String accessKeySecret = "<your-access-key-secret>";

@PostMapping("/scanImage")
public String scanImage(@RequestBody HashMap<String,String> reqMap) throws Exception {
    // 获取待检测的文字
    String image = reqMap.get("image");
    System.out.println("image="+image);

    // 返回结果的变量
    Map<String,String> resMap = new HashMap<>();

    //实例化客户端
    Config config = new Config()
        // 必填,您的 AccessKey ID
        .setAccessKeyId(accessKeyId)
        // 必填,您的 AccessKey Secret
        .setAccessKeySecret(accessKeySecret);
    config.endpoint = "imageaudit.cn-shanghai.aliyuncs.com";
    Client client = new Client(config);


    // 设置待检测内容
    ScanImageRequest.ScanImageRequestTask task0 = new ScanImageRequest.ScanImageRequestTask().setImageURL(image);

    // 封装检测请求
    /**
         * porn:图片智能鉴黄
         * terrorism:图片敏感内容识别、图片风险人物识别
         * ad:图片垃圾广告识别
         * live:图片不良场景识别
         * logo:图片Logo识别
         */
    ScanImageRequest scanImageRequest = new ScanImageRequest()
        .setTask(java.util.Arrays.asList(
            task0
        ))
        .setScene(java.util.Arrays.asList(
            "porn","terrorism","live"

        ));

    RuntimeOptions runtime = new RuntimeOptions();

    // 调用API获取检测结果
    ScanImageResponse response =  client.scanImageWithOptions(scanImageRequest, runtime);
    resMap.put("data",JSON.toJSONString(response.getBody().getData().getResults().get(0)));


    // 检测结果解析
    try {
        List<ScanImageResponseBody.ScanImageResponseBodyDataResultsSubResults> responseSubResults = response.getBody().getData().getResults().get(0).getSubResults();

        for(ScanImageResponseBody.ScanImageResponseBodyDataResultsSubResults responseSubResult : responseSubResults){
            if(responseSubResult.getSuggestion()!="pass"){
                resMap.put("state",responseSubResult.getSuggestion());

                String msg = "";
                switch (responseSubResult.getLabel()){
                    case "porn":
                        msg = "图片智能鉴黄未通过";
                        break;
                    case "terrorism":
                        msg = "图片敏感内容识别、图片风险人物识别未通过";
                        break;
                    case "ad":
                        msg = "图片垃圾广告识别未通过";
                        break;
                    case "live":
                        msg = "图片不良场景识别未通过";
                        break;
                    case "logo":
                        msg = "图片Logo识别未通过";
                        break;
                }

                return JSON.toJSONString(resMap);
            }

        }

    } catch (Exception error) {
        resMap.put("state","review");
        resMap.put("msg","发生错误,详情:"+error);
        return  JSON.toJSONString(resMap);
    }
    resMap.put("state","pass");
    return  JSON.toJSONString(resMap);
}

4.2 调用结果

  • req
{
    "image":"https://jupite-aliyun.oss-cn-hangzhou.aliyuncs.com/second_hand_shop/client/img/goodImgs/1683068284289.jpg"
}
  • res
{
    "data": {
        "imageURL": "http://jupite-aliyun.oss-cn-hangzhou.aliyuncs.com/second_hand_shop/client/img/goodImgs/1683068284289.jpg",
        "subResults": [
            {
                "label": "normal",
                "rate": 99.9,
                "scene": "porn",
                "suggestion": "pass"
            },
            {
                "label": "normal",
                "rate": 99.88,
                "scene": "terrorism",
                "suggestion": "pass"
            },
            {
                "label": "normal",
                "rate": 99.91,
                "scene": "live",
                "suggestion": "pass"
            }
        ]
    },
    "state": "pass"
}

参考资料

  1. https://next.api.aliyun.com/api/imageaudit/2019-12-30/ScanImage
  2. 阿里云文本检测 使用教程(Java)
  3. https://vision.aliyun.com/imageaudit?spm=5176.11065253.1411203.3.7e8153f6mehjzV
0

评论 (0)

打卡
取消