fastrcnn网络结构复现

jupiter
2023-12-30 / 0 评论 / 34 阅读 / 正在检测是否收录...
温馨提示:
本文最后更新于2023年12月30日,已超过326天没有更新,若内容或图片失效,请留言反馈。

1.backbone-restnet50

import math

import torch.nn as nn


class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        #-----------------------------------#
        #   假设输入进来的图片是600,600,3
        #-----------------------------------#
        self.inplanes = 64
        super(ResNet, self).__init__()

        # 600,600,3 -> 300,300,64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)

        # 300,300,64 -> 150,150,64
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True)

        # 150,150,64 -> 150,150,256
        self.layer1 = self._make_layer(block, 64, layers[0])
        # 150,150,256 -> 75,75,512
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        # 75,75,512 -> 38,38,1024 到这里可以获得一个38,38,1024的共享特征层
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        # self.layer4被用在classifier模型中
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        #-------------------------------------------------------------------#
        #   当模型需要进行高和宽的压缩的时候,就需要用到残差边的downsample
        #-------------------------------------------------------------------#
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

def resnet50():
    model = ResNet(Bottleneck, [3, 4, 6, 3])
    #----------------------------------------------------------------------------#
    #   获取特征提取部分,从conv1到model.layer3,最终获得一个38,38,1024的特征层
    #----------------------------------------------------------------------------#
    features = list([model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2, model.layer3])
    #----------------------------------------------------------------------------#
    #   获取分类部分,从model.layer4到model.avgpool
    #----------------------------------------------------------------------------#
    classifier = list([model.layer4, model.avgpool])
    
    features = nn.Sequential(*features)
    classifier = nn.Sequential(*classifier)
    return features, classifier

extractor,classifier = resnet50()
print(extractor)
Sequential(
  (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace=True)
  (3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
  (4): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (5): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (6): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (4): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (5): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
)

2.RPN

import numpy as np

def generate_anchor_base(base_size=16, ratios=[0.5, 1, 2],
                         anchor_scales=[8, 16, 32]):

    anchor_base = np.zeros((len(ratios) * len(anchor_scales), 4), dtype=np.float32)
    for i in range(len(ratios)):
        for j in range(len(anchor_scales)):
            h = base_size * anchor_scales[j] * np.sqrt(ratios[i])
            w = base_size * anchor_scales[j] * np.sqrt(1. / ratios[i])

            index = i * len(anchor_scales) + j
            anchor_base[index, 0] = - h / 2.
            anchor_base[index, 1] = - w / 2.
            anchor_base[index, 2] = h / 2.
            anchor_base[index, 3] = w / 2.
    return anchor_base

# 产生特征图上每个点对应的9个base anchor
def _enumerate_shifted_anchor(anchor_base, feat_stride, height, width):
    # 计算网格中心点
    shift_x = np.arange(0, width * feat_stride, feat_stride)
    shift_y = np.arange(0, height * feat_stride, feat_stride)
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    shift = np.stack((shift_x.ravel(),shift_y.ravel(),
                      shift_x.ravel(),shift_y.ravel(),), axis=1)

    # 每个网格点上的9个先验框
    A = anchor_base.shape[0]
    K = shift.shape[0]
    anchor = anchor_base.reshape((1, A, 4)) + \
             shift.reshape((K, 1, 4))
    # 所有的先验框
    anchor = anchor.reshape((K * A, 4)).astype(np.float32)
    return anchor

import matplotlib.pyplot as plt
nine_anchors = generate_anchor_base() # 产生特征图上每个点对应的9个base anchor

height, width, feat_stride = 38,38,16 # 特征图的shape feature_map_w,feature_map_h,feature_map_c = 38,38,16

# 生成整个特征图对应的所有的base anchor ,总计feature_map_w*feature_map_h*9个
anchors_all = _enumerate_shifted_anchor(nine_anchors,feat_stride,height,width)
print(np.shape(anchors_all))

fig = plt.figure()
ax = fig.add_subplot(111)
plt.ylim(-300,900)
plt.xlim(-300,900)

# 模拟绘制特征提取之前的原图
shift_x = np.arange(0, width * feat_stride, feat_stride)
shift_y = np.arange(0, height * feat_stride, feat_stride)
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
plt.scatter(shift_x,shift_y)

# 绘制特征图上像素点(pix_x,pix_y)对应原图的所有anchor
pix_x,pix_y = 12,0
index_begin = pix_y*width*9 + pix_x*9
index_end = pix_y*width*9 + pix_x*9 + 9
print(index_begin)
box_widths = anchors_all[:,2]-anchors_all[:,0]
box_heights = anchors_all[:,3]-anchors_all[:,1]
for i in range(index_begin,index_end):
    rect = plt.Rectangle([anchors_all[i, 0],anchors_all[i, 1]],box_widths[i],box_heights[i],color="r",fill=False)
    ax.add_patch(rect)

plt.show()

# 将RPN网络预测结果转化成建议框
def loc2bbox(src_bbox, loc):
    if src_bbox.size()[0] == 0:
        return torch.zeros((0, 4), dtype=loc.dtype)

    src_width = torch.unsqueeze(src_bbox[:, 2] - src_bbox[:, 0], -1)
    src_height = torch.unsqueeze(src_bbox[:, 3] - src_bbox[:, 1], -1)
    src_ctr_x = torch.unsqueeze(src_bbox[:, 0], -1) + 0.5 * src_width
    src_ctr_y = torch.unsqueeze(src_bbox[:, 1], -1) + 0.5 * src_height

    dx = loc[:, 0::4]
    dy = loc[:, 1::4]
    dw = loc[:, 2::4]
    dh = loc[:, 3::4]

    ctr_x = dx * src_width + src_ctr_x
    ctr_y = dy * src_height + src_ctr_y
    w = torch.exp(dw) * src_width
    h = torch.exp(dh) * src_height
    dst_bbox = torch.zeros_like(loc)
    dst_bbox[:, 0::4] = ctr_x - 0.5 * w
    dst_bbox[:, 1::4] = ctr_y - 0.5 * h
    dst_bbox[:, 2::4] = ctr_x + 0.5 * w
    dst_bbox[:, 3::4] = ctr_y + 0.5 * h

    return dst_bbox
class ProposalCreator():
    def __init__(self, mode, nms_thresh=0.7,
                 n_train_pre_nms=12000,
                 n_train_post_nms=600,
                 n_test_pre_nms=3000,
                 n_test_post_nms=300,
                 min_size=16):
        self.mode = mode
        self.nms_thresh = nms_thresh
        self.n_train_pre_nms = n_train_pre_nms
        self.n_train_post_nms = n_train_post_nms
        self.n_test_pre_nms = n_test_pre_nms
        self.n_test_post_nms = n_test_post_nms
        self.min_size = min_size

    def __call__(self, loc, score,
                 anchor, img_size, scale=1.):

        if self.mode == "training":
            n_pre_nms = self.n_train_pre_nms
            n_post_nms = self.n_train_post_nms
        else:
            n_pre_nms = self.n_test_pre_nms
            n_post_nms = self.n_test_post_nms

        anchor = torch.from_numpy(anchor)
        if loc.is_cuda:
            anchor = anchor.cuda()
        #-----------------------------------#
        #   将RPN网络预测结果转化成建议框
        #-----------------------------------#
        roi = loc2bbox(anchor, loc)

        #-----------------------------------#
        #   防止建议框超出图像边缘
        #-----------------------------------#
        roi[:, [0, 2]] = torch.clamp(roi[:, [0, 2]], min = 0, max = img_size[1])
        roi[:, [1, 3]] = torch.clamp(roi[:, [1, 3]], min = 0, max = img_size[0])
        
        #-----------------------------------#
        #   建议框的宽高的最小值不可以小于16
        #-----------------------------------#
        min_size = self.min_size * scale
        keep = torch.where(((roi[:, 2] - roi[:, 0]) >= min_size) & ((roi[:, 3] - roi[:, 1]) >= min_size))[0]
        roi = roi[keep, :]
        score = score[keep]

        #-----------------------------------#
        #   根据得分进行排序,取出建议框
        #-----------------------------------#
        order = torch.argsort(score, descending=True)
        if n_pre_nms > 0:
            order = order[:n_pre_nms]
        roi = roi[order, :]
        score = score[order]

        #-----------------------------------#
        #   对建议框进行非极大抑制
        #-----------------------------------#
        keep = nms(roi, score, self.nms_thresh)
        keep = keep[:n_post_nms]
        roi = roi[keep]
        return roi

3.合并backbone与rpn--记为FRCNN_RPN

class FRCNN_RPN(nn.Module):
    def __init__(self,extractor,rpn):
        super(FRCNN_RPN, self).__init__()
     
        self.extractor = extractor
        self.rpn = rpn

    def forward(self, x, img_size):
        print(img_size)
        
        feature_map = self.extractor(x)
        
        rpn_locs, rpn_scores, rois, roi_indices, anchor = self.rpn(feature_map,img_size)
    
        return rpn_locs, rpn_scores, rois, roi_indices, anchor
# 加载模型参数
param = torch.load("./frcnn-restnet50.pth")
param.keys()

rpn = RegionProposalNetwork(in_channels=1024,mode="predict")

frcnn_rpn = FRCNN_RPN(extractor,rpn)
frcnn_rpn_state_dict = frcnn_rpn.state_dict()
for key in frcnn_rpn_state_dict.keys():
    frcnn_rpn_state_dict[key] = param[key]

frcnn_rpn.load_state_dict(frcnn_rpn_state_dict)
from PIL import Image
import copy

def get_new_img_size(width, height, img_min_side=600):
    if width <= height:
        f = float(img_min_side) / width
        resized_height = int(f * height)
        resized_width = int(img_min_side)
    else:
        f = float(img_min_side) / height
        resized_width = int(f * width)
        resized_height = int(img_min_side)

    return resized_width, resized_height

img_path = os.path.join("xx.jpg")

image = Image.open(img_path)

image = image.convert("RGB") # 转换成RGB图片,可以用于灰度图预测。

image_shape = np.array(np.shape(image)[0:2])


old_width, old_height = image_shape[1], image_shape[0]
old_image = copy.deepcopy(image)


# 给原图像进行resize,resize到短边为600的大小上
width,height = get_new_img_size(old_width, old_height)
image = image.resize([width,height], Image.BICUBIC) 

print(image.size)

#  图片预处理,归一化。
photo = np.transpose(np.array(image,dtype = np.float32)/255, (2, 0, 1))

with torch.no_grad():
    images = torch.from_numpy(np.asarray([photo]))
    rpn_locs, rpn_scores, rois, roi_indices, anchor = frcnn_rpn(images,[height,width])
    
    fig = plt.figure(dpi=200)
    ax = fig.add_subplot(111)
    
    ax.imshow(image)
    
    # 绘制RPN的结果
    for i in range(rois.shape[0]):
        x1,y1,x2,y2 = rois[i]
        w,h = x2-x1,y2-y1
        rect = plt.Rectangle([x1,y1],w,h,color="r",fill=False)
        ax.add_patch(rect)

    
    plt.xticks([])
    plt.yticks([])
    plt.show()
    
    print(anchor.shape)
    print(rois.shape)
0

评论 (0)

打卡
取消