首页
壁纸
留言板
友链
更多
统计归档
Search
1
TensorBoard:训练日志及网络结构可视化工具
12,590 阅读
2
主板开机跳线接线图【F_PANEL接线图】
7,165 阅读
3
Linux使用V2Ray 原生客户端
6,280 阅读
4
移动光猫获取超级密码&开启公网ipv6
4,972 阅读
5
NVIDIA 显卡限制功率
3,156 阅读
好物分享
实用教程
linux使用
wincmd
学习笔记
mysql
java学习
nginx
综合面试题
大数据
网络知识
linux
放码过来
python
javascript
java
opencv
蓝桥杯
leetcode
深度学习
开源模型
相关知识
数据集和工具
模型轻量化
语音识别
计算机视觉
杂七杂八
硬件科普
主机安全
嵌入式设备
其它
bug处理
登录
/
注册
Search
标签搜索
好物分享
学习笔记
linux
MySQL
nvidia
typero
内网穿透
webdav
vps
java
cudann
gcc
cuda
树莓派
CNN
图像去雾
ssh安全
nps
暗通道先验
阿里云
jupiter
累计撰写
354
篇文章
累计收到
72
条评论
首页
栏目
好物分享
实用教程
linux使用
wincmd
学习笔记
mysql
java学习
nginx
综合面试题
大数据
网络知识
linux
放码过来
python
javascript
java
opencv
蓝桥杯
leetcode
深度学习
开源模型
相关知识
数据集和工具
模型轻量化
语音识别
计算机视觉
杂七杂八
硬件科普
主机安全
嵌入式设备
其它
bug处理
页面
壁纸
留言板
友链
统计归档
搜索到
62
篇与
的结果
2021-01-12
YOLOv1学习:(一)网络结构推导与实现
YOLOv1学习:(一)网络结构推导与实现原论文网络结构知乎看到的网络结构分析(见参考资料1)二次网络结构分析7*7*30输出解释实际操作如图所示,分为7*7个小格子,每个格子预测两个bounding box。如果一个目标的中心落入一个网格单元中,该网格单元负责检测 该目标。对每一个切割的小单元格预测(置信度,边界框的位置),每个bounding box需要4个数值来表示其位置,(Center_x,Center_y,width,height),即(bounding box的中心点的x坐标,y坐标,bounding box的宽度,高度)置信度定义为该区域内是否包含物体的概率,打标签的时候,正样本(与真实物体有最大IOU的边框设为正样本)置信度真值为1,负样本为0.还要得到分类的概率结果;20个分类每个类别的概率。7*7*30中的30=(20类概率+2*5(置信度,边框位置))Pytorch实现网络结构基本骨架import torch import torch.nn as nn feature = nn.Sequential( nn.Conv2d(in_channels=3,out_channels=64,kernel_size=7,stride=2,padding=3), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=64,out_channels=192,kernel_size=3,stride=1,padding=1), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=192,out_channels=128,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=256,out_channels=256,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=512,out_channels=512,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=1024,out_channels=512,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=1024,out_channels=512,kernel_size=1,stride=1,padding=0), nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=2,padding=1), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1), ) classify = nn.Sequential( nn.Flatten(), nn.Linear(1024 * 7 * 7, 4096), nn.Linear(4096, 1470) #1470=7*7*30 ) yolov1 = nn.Sequential( feature, classify )基本骨架-结构打印Sequential( (0): Sequential( (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3)) (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (2): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1)) (5): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (7): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (9): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (10): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (12): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (14): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (16): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (17): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1)) (18): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (19): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (20): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1)) (21): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1)) (23): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (24): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (26): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (1): Sequential( (0): Flatten() (1): Linear(in_features=50176, out_features=4096, bias=True) (2): Linear(in_features=4096, out_features=1470, bias=True) ) )加入损失函数和Dropoutimport torch import torch.nn as nn feature = nn.Sequential( nn.Conv2d(in_channels=3,out_channels=64,kernel_size=7,stride=2,padding=3), nn.LeakyReLU(), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=64,out_channels=192,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=192,out_channels=128,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=256,out_channels=256,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=512,out_channels=256,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1), nn.Conv2d(in_channels=512,out_channels=512,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(in_channels=1024,out_channels=512,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=1024,out_channels=512,kernel_size=1,stride=1,padding=0), nn.LeakyReLU(), nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=2,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3,stride=1,padding=1), nn.LeakyReLU(), ) classify = nn.Sequential( nn.Flatten(), nn.Linear(1024 * 7 * 7, 4096), nn.Dropout(0.5), nn.Linear(4096, 1470) #1470=7*7*30 ) yolov1 = nn.Sequential( feature, classify ) print(yolov1)参考资料YOLO V1 网络结构分析:https://zhuanlan.zhihu.com/p/220062200?utm_source=wechat_sessionYOLOv1算法理解:https://www.cnblogs.com/ywheunji/p/10808989.html
2021年01月12日
641 阅读
0 评论
0 点赞
2020-09-18
ubuntu编译安装谷歌tesseract-ocr
安装依赖-leptonica库下载源码git clone https://github.com/DanBloomberg/leptonica.gitconfiguresudo apt install automake bash autogen.sh ./configure编译安装make sudo make install这样就安装好了leptonica库谷歌tesseract-ocr编译安装下载源码git clone https://github.com/tesseract-ocr/tesseract.git tesseract-ocr安装依赖sudo apt-get install g++ autoconf automake libtool autoconf-archive pkg-config libpng12-dev libjpeg8-dev libtiff5-dev zlib1g-dev libleptonica-dev -y安装训练所需要的库(只是调用可以不用安装)sudo apt-get install libicu-dev libpango1.0-dev libcairo2-devconfigurebash autogen.sh ./configure编译安装make sudo make install # 可选项,不训练可以选择不执行下面两条 make training sudo make training-install sudo ldconfig安装对应的字体库并添加对应的环境变量下载好的语言包 放在/usr/local/share/tessdata目录里面。语言包地址:https://github.com/tesseract-ocr/tessdata_best。里面有各种语言包,都是训练好的语言包。简体中文下载:chi_sim.traineddata , chi_sim_vert.traineddata英文包:eng.traineddata。设置环境变量vim ~/.bashrc # 在.bashrc的文件末尾加入以下内容 export TESSDATA_PREFIX=/usr/local/share/tessdata source ~/.bashrc查看字体库tesseract --list-langs使用tesseract-ocr测试# 识别/home/app/1.png这张图片,内容输出到output.txt 里面,用chi_sim 中文来识别(不用加.traineddata,会默认加) tesseract /home/app/1.png output -l chi_sim # 查看识别结果 cat output.txt
2020年09月18日
630 阅读
0 评论
0 点赞
1
...
4
5