深度学习中的FLOPs介绍及计算(注意区分FLOPS)

jupiter
2021-09-14 / 0 评论 / 855 阅读 / 正在检测是否收录...
温馨提示:
本文最后更新于2021年12月07日,已超过809天没有更新,若内容或图片失效,请留言反馈。

FLOPS与FLOPs

FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。

FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

全连接网络中FLOPs的计算

推导

以4个输入神经元和3个输出神经元为例

计算一个输出神经元的的计算过程为

$$ y1 = w_{11}*x_1+w_{21}*x_2+w_{31}*x_3+w_{41}*x_4 $$

所需的计算次数为

  • 4次乘法
  • 3次加法

共需4+3=7计算。推广到I个输入神经元O个输出神经元后则计算一个输出神经元所需要的计算次数为$I+(I-1)=2I-1$,则总的计算次数为

$$ FLOPs = (2I-1)*O $$

考虑bias则为

$$ y1 = w_{11}*x_1+w_{21}*x_2+w_{31}*x_3+w_{41}*x_4+b1 $$

总的计算次数为

$$ FLOPs = 2I*O $$

结果

FC(full connected)层FLOPs的计算公式如下(不考虑bias时有-1,有bias时没有-1):

$$ FLOPs = (2 \times I - 1) \times O $$

其中:

  • I = input neuron numbers(输入神经元的数量)
  • O = output neuron numbers(输出神经元的数量)

CNN中FLOPs的计算

以下答案不考虑activation function的运算

推导

对于输入通道数为$C_{in}$,卷积核的大小为K,输出通道数为$C_{out}$,输出特征图的尺寸为$H*W$

  • 进行一次卷积运算的计算次数为

    • 乘法$C_{in}K^2$次
    • 加法$C_{in}K^2-1$次
    • 共计$C_{in}K^2+C_{in}K^2-1=2C_{in}K^2-1$次,若考虑bias则再加1次
  • 得到一个channel的特征图所需的卷积次数为$H*W$次
  • 共计需得到$C_{out}$个特征图

因此对于CNN中的一个卷积层来说总的计算次数为(不考虑bias时有-1,考虑bias时没有-1):

$$ FLOPs = (2C_{in}K^2-1)HWC_{out} $$

结果

卷积层FLOPs的计算公式如下(不考虑bias时有-1,有bias时没有-1):

$$ FLOPs = (2C_{in}K^2-1)HWC_{out} $$

其中:

  • $C_{in}$ = input channel
  • K= kernel size
  • H,W = output feature map size
  • $C_{out}$ = output channel

计算FLOPs的代码或包

  • torchstat
from torchstat import stat
import torchvision.models as models

model = models.vgg16()
stat(model, (3, 224, 224))
        module name  input shape output shape       params memory(MB)              MAdd             Flops   MemRead(B)  MemWrite(B) duration[%]    MemR+W(B)
0        features.0    3 224 224   64 224 224       1792.0      12.25     173,408,256.0      89,915,392.0     609280.0   12845056.0       3.67%   13454336.0
1        features.1   64 224 224   64 224 224          0.0      12.25       3,211,264.0       3,211,264.0   12845056.0   12845056.0       1.83%   25690112.0
2        features.2   64 224 224   64 224 224      36928.0      12.25   3,699,376,128.0   1,852,899,328.0   12992768.0   12845056.0       8.43%   25837824.0
3        features.3   64 224 224   64 224 224          0.0      12.25       3,211,264.0       3,211,264.0   12845056.0   12845056.0       1.45%   25690112.0
4        features.4   64 224 224   64 112 112          0.0       3.06       2,408,448.0       3,211,264.0   12845056.0    3211264.0      11.37%   16056320.0
5        features.5   64 112 112  128 112 112      73856.0       6.12   1,849,688,064.0     926,449,664.0    3506688.0    6422528.0       4.03%    9929216.0
6        features.6  128 112 112  128 112 112          0.0       6.12       1,605,632.0       1,605,632.0    6422528.0    6422528.0       0.73%   12845056.0
7        features.7  128 112 112  128 112 112     147584.0       6.12   3,699,376,128.0   1,851,293,696.0    7012864.0    6422528.0       5.86%   13435392.0
8        features.8  128 112 112  128 112 112          0.0       6.12       1,605,632.0       1,605,632.0    6422528.0    6422528.0       0.37%   12845056.0
9        features.9  128 112 112  128  56  56          0.0       1.53       1,204,224.0       1,605,632.0    6422528.0    1605632.0       7.32%    8028160.0
10      features.10  128  56  56  256  56  56     295168.0       3.06   1,849,688,064.0     925,646,848.0    2786304.0    3211264.0       3.30%    5997568.0
11      features.11  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.00%    6422528.0
12      features.12  256  56  56  256  56  56     590080.0       3.06   3,699,376,128.0   1,850,490,880.0    5571584.0    3211264.0       5.13%    8782848.0
13      features.13  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.37%    6422528.0
14      features.14  256  56  56  256  56  56     590080.0       3.06   3,699,376,128.0   1,850,490,880.0    5571584.0    3211264.0       4.76%    8782848.0
15      features.15  256  56  56  256  56  56          0.0       3.06         802,816.0         802,816.0    3211264.0    3211264.0       0.37%    6422528.0
16      features.16  256  56  56  256  28  28          0.0       0.77         602,112.0         802,816.0    3211264.0     802816.0       2.56%    4014080.0
17      features.17  256  28  28  512  28  28    1180160.0       1.53   1,849,688,064.0     925,245,440.0    5523456.0    1605632.0       3.66%    7129088.0
18      features.18  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.00%    3211264.0
19      features.19  512  28  28  512  28  28    2359808.0       1.53   3,699,376,128.0   1,850,089,472.0   11044864.0    1605632.0       5.50%   12650496.0
20      features.20  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.00%    3211264.0
21      features.21  512  28  28  512  28  28    2359808.0       1.53   3,699,376,128.0   1,850,089,472.0   11044864.0    1605632.0       5.49%   12650496.0
22      features.22  512  28  28  512  28  28          0.0       1.53         401,408.0         401,408.0    1605632.0    1605632.0       0.00%    3211264.0
23      features.23  512  28  28  512  14  14          0.0       0.38         301,056.0         401,408.0    1605632.0     401408.0       1.10%    2007040.0
24      features.24  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       2.94%   10242048.0
25      features.25  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.00%     802816.0
26      features.26  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       2.57%   10242048.0
27      features.27  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.00%     802816.0
28      features.28  512  14  14  512  14  14    2359808.0       0.38     924,844,032.0     462,522,368.0    9840640.0     401408.0       2.19%   10242048.0
29      features.29  512  14  14  512  14  14          0.0       0.38         100,352.0         100,352.0     401408.0     401408.0       0.37%     802816.0
30      features.30  512  14  14  512   7   7          0.0       0.10          75,264.0         100,352.0     401408.0     100352.0       0.37%     501760.0
31          avgpool  512   7   7  512   7   7          0.0       0.10               0.0               0.0          0.0          0.0       0.00%          0.0
32     classifier.0        25088         4096  102764544.0       0.02     205,516,800.0     102,760,448.0  411158528.0      16384.0      10.62%  411174912.0
33     classifier.1         4096         4096          0.0       0.02           4,096.0           4,096.0      16384.0      16384.0       0.00%      32768.0
34     classifier.2         4096         4096          0.0       0.02               0.0               0.0          0.0          0.0       0.37%          0.0
35     classifier.3         4096         4096   16781312.0       0.02      33,550,336.0      16,777,216.0   67141632.0      16384.0       2.20%   67158016.0
36     classifier.4         4096         4096          0.0       0.02           4,096.0           4,096.0      16384.0      16384.0       0.00%      32768.0
37     classifier.5         4096         4096          0.0       0.02               0.0               0.0          0.0          0.0       0.37%          0.0
38     classifier.6         4096         1000    4097000.0       0.00       8,191,000.0       4,096,000.0   16404384.0       4000.0       0.73%   16408384.0
total                                          138357544.0     109.39  30,958,666,264.0  15,503,489,024.0   16404384.0       4000.0     100.00%  783170624.0
============================================================================================================================================================
Total params: 138,357,544
------------------------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 109.39MB
Total MAdd: 30.96GMAdd
Total Flops: 15.5GFlops
Total MemR+W: 746.89MB

参考资料

  1. CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的?
  2. 分享一个FLOPs计算神器
  3. CNN Explainer
  4. [Molchanov P , Tyree S , Karras T , et al. Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning[J]. 2016.](https://arxiv.org/pdf/1611.06440.pdf)
0

评论 (0)

打卡
取消